• 元宇宙:本站分享元宇宙相关资讯,资讯仅代表作者观点与平台立场无关,仅供参考.

Pandas 数据排序,人人都能学会的几种方法

  • AI科技大本营
  • 2022年5月26日06时

作者 | 阳哥

来源 | Python数据之道

Pandas 可以说是 在Python数据科学领域应用最为广泛的工具之一。

Pandas是一种高效的数据处理库,它以 dataframeseries 为基本数据类型,呈现出类似excel的二维数据。

在数据处理过程中,咱们经常需要将数据按照一定的要求进行排序,以方便展示。

这里,来给大家分享下 在 Pandas 中排序的几种常用方法,主要包括 sort_indexsort_values

01 按索引排序

数据准备

文中主要使用了 pandasnumpy ,首先导入 Python 库,如下:
importpandasaspd
importnumpyasnp
print(f'pandasversion:{pd.__version__}')

#pandasversion1.3.2
本次使用的数据如下:
data={
'brand':['Python数据之道','价值前瞻','菜鸟数据之道','Python','Java'],
'B':[4,6,8,12,10],
'A':[10,2,5,20,16],
'D':[6,18,14,6,12],
'years':[4,1,1,30,30],
'C':[8,12,18,8,2],
}

index=[9,3,4,5,2]

df=pd.DataFrame(data=data,index=index)
df

按行索引排序

sort_index() 是 pandas 中按索引排序的函数,默认情况下, sort_index 是按行索引来排序。
通过设置参数 ascending 可以设置升序或降序排列,默认情况下是 ascending=True ,为升序排列。
设置 ascending=False 时,为降序排列,如下:

按列的名称排序

通过设置参数 axis=1 可实现按列的名称排序,如下:
同样的,可以设置 参数 ascending 的值,如下:
关于按列的名称排序,更多的方法,可以参考下面的内容:

02 按数值排序

sort_values() 是 pandas 中按数值排序的函数。

按单个列的值排序

sort_values() 中设置单个列的列名称,可以对单个列进行排序,通过设置参数 ascending 可以设置升序或降序排列,如下:

按多个列的值排序

同时,sort_values() 可以对多个列进行不同的排序,通过设置列明和排序方式组合来实现,如下:
设置参数 ascendingyears 列为升序,B 列为降序,如下:

选择排序算法

选择排序算法,参数 kind 默认是 'quicksort',其他算法有 mergesort, heapsort, stable。
该参数只针对单个列时才有效。
在 numpy 的 sort文档中,对几种排序的特点进行了描述,主要是程序运行时占用的资源和运行速度有差异。
numpy 文档地址:
https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort
示例如下:

忽略索引

在排序过程中,还可以引入 ignore_index 参数,来对行索引重新设置,如下:

inplace

inplace 是 pandas 中常见的一个参数。
inplace = True:不创建新的对象,直接对原始对象进行修改;默认是 False,即创建新的对象进行修改,原对象不变,和深复制和浅复制有些类似。

缺失值

先构造一个含缺失值的 dataframe,如下:
data={
'brand':['Python数据之道','价值前瞻','菜鸟数据之道','Python','Java'],
'B':[4,6,8,np.nan,12],
'A':['Lemon','emma','ZW','app','John'],
'D':[6,18,14,6,12],
'years':[4,1,1,30,30],
'C':[8,12,18,8,2],
}

index=[9,3,4,5,2]

df1=pd.DataFrame(data=data,index=index)
df1
缺失值排在最前面:
缺失值排在最后面:

key 参数

通过设置 key 参数,可以将列按照特定条件进行排序,对比下下面的排序:




往期回顾

介绍Pandas实战中的一些高端玩法


真香!详解Python好用的内置函数


Python 实现 GIF 动图以及视频卡通化


如何用一行Python代码制作一个GUI?


分享

点收藏

点点赞

点在看

Copyright © 2021.Company 元宇宙YITB.COM All rights reserved.元宇宙YITB.COM